Tonic Dopamine Modulates Exploitation of Reward Learning
نویسندگان
چکیده
The impact of dopamine on adaptive behavior in a naturalistic environment is largely unexamined. Experimental work suggests that phasic dopamine is central to reinforcement learning whereas tonic dopamine may modulate performance without altering learning per se; however, this idea has not been developed formally or integrated with computational models of dopamine function. We quantitatively evaluate the role of tonic dopamine in these functions by studying the behavior of hyperdopaminergic DAT knockdown mice in an instrumental task in a semi-naturalistic homecage environment. In this "closed economy" paradigm, subjects earn all of their food by pressing either of two levers, but the relative cost for food on each lever shifts frequently. Compared to wild-type mice, hyperdopaminergic mice allocate more lever presses on high-cost levers, thus working harder to earn a given amount of food and maintain their body weight. However, both groups show a similarly quick reaction to shifts in lever cost, suggesting that the hyperdominergic mice are not slower at detecting changes, as with a learning deficit. We fit the lever choice data using reinforcement learning models to assess the distinction between acquisition and expression the models formalize. In these analyses, hyperdopaminergic mice displayed normal learning from recent reward history but diminished capacity to exploit this learning: a reduced coupling between choice and reward history. These data suggest that dopamine modulates the degree to which prior learning biases action selection and consequently alters the expression of learned, motivated behavior.
منابع مشابه
Thorndike's Law 2.0: Dopamine and the Regulation of Thrift
Dopamine is widely associated with reward, motivation, and reinforcement learning. Research on dopamine has emphasized its contribution to compulsive behaviors, such as addiction and overeating, with less examination of its potential role in behavioral flexibility in normal, non-pathological states. In the study reviewed here, we investigated the effect of increased tonic dopamine in a two-leve...
متن کاملAn exploration-exploitation model based on norepinepherine and dopamine activity
We propose a model by which dopamine (DA) and norepinepherine (NE) combine to alternate behavior between relatively exploratory and exploitative modes. The model is developed for a target detection task for which there is extant single neuron recording data available from locus coeruleus (LC) NE neurons. An exploration-exploitation trade-off is elicited by regularly switching which of the two s...
متن کاملDopaminergic Medication Modulates Learning from Feedback and Error-Related Negativity in Parkinson’s Disease: A Pilot Study
Dopamine systems mediate key aspects of reward learning. Parkinson's disease (PD) represents a valuable model to study reward mechanisms because both the disease process and the anti-Parkinson medications influence dopamine neurotransmission. The aim of this pilot study was to investigate whether the level of levodopa differently modulates learning from positive and negative feedback and its el...
متن کاملDopaminergic Control of the Exploration-Exploitation Trade-Off via the Basal Ganglia
We continuously face the dilemma of choosing between actions that gather new information or actions that exploit existing knowledge. This "exploration-exploitation" trade-off depends on the environment: stability favors exploiting knowledge to maximize gains; volatility favors exploring new options and discovering new outcomes. Here we set out to reconcile recent evidence for dopamine's involve...
متن کاملA neurocomputational model of tonic and phasic dopamine in action selection: a comparison with cognitive deficits in Parkinson's disease.
The striatal dopamine signal has multiple facets; tonic level, phasic rise and fall, and variation of the phasic rise/fall depending on the expectation of reward/punishment. We have developed a network model of the striatal direct pathway using an ionic current level model of the medium spiny neuron that incorporates currents sensitive to changes in the tonic level of dopamine. The model neuron...
متن کامل